Automatic pharmacophore model generation using weighted substructure assignments
نویسندگان
چکیده
The generation of a pharmacophore model is a challenging process, which often requires the interaction of medicinal chemists. Given a number of ligands for a specific target, the aim is to identify the pharmacophore patterns that are responsible for the biological activities of chemical compounds. A recent study of optimal assignment methods has shown that the assignment of chemical substructures is able to detect active compounds in a data set [1]. Therefore, we investigated the possibility to use this technique to identify key features of a set of active compounds. To determine important substructures of active compounds, we integrated n weight factors, where n is the number of substructures. The substructures were defined using the pharmacophore definitions of Phase 3.0 [2]. To define the individual weights of the pharmacophore patterns, we integrated a genetic algorithm which assigns weight factors to the previously defined patterns. The experimental setup was designed as follows: Given a data set with active compounds, the most active compound was selected as query structure for the experiment. The remaining active compounds were inserted into a background data set containing inactive compounds. The genetic algorithm evolved n weights for the pharmacophore patterns of the query structure. To evaluate the fitness of an individual, we performed a single query screening with the weights of the individual. During the optimization process, the BEDROC score [3] is optimized which puts emphasis on the early recognition performance. The result of the genetic algorithm was a weight vector that assigns each pharmacophore feature the weight of the best individual. We evaluated our approach on a subset of the Directory of Useful Decoys that is suitable for ligand-based virtual screening [1][4]. The query structure was extracted from the same complexed crystal structure used by Huang et al. [4] to determine the binding site of the protein. The presented method is able to provide valuable information about key features that are important for the biological activity of a compound. Additionally, information of the protein structure is not needed. Therefore, the method can also be used to derive a pharmacophore model if no protein structure is available (e.g. GPCRs).
منابع مشابه
Improvement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملConsensus Superiority of the Pharmacophore-Based Alignment, Over Maximum Common Substructure (MCS): 3D-QSAR Studies on Carbamates as Acetylcholinesterase Inhibitors
In view of the nonavailability of complete X-ray structure of carbamates cocrystallized with AChE enzyme, the 3D-QSAR model development based on cocrystallized conformer (CCBA) as well as docked conformer-based alignment (DCBA) is not feasible. Therefore, the only two alternatives viz. pharmacophore and maximum common substructure-based alignments are left for the 3D-QSAR comparative molecular ...
متن کاملPharmacophore Discovery using the InductiveLogic Programming System
This paper is a case study of a machine aided knowledge discovery process within the general area of drug design. More speciically, the paper describes a sequence of experiments in which an Inductive Logic Programming(ILP) system is used for pharmacophore discovery. Within drug design, a pharmacophore is a description of the substructure of a ligand (a small molecule) which is responsible for m...
متن کاملGet the best from substructure mining
The chemical information that is present in a set of compounds is rarely fully exploited. This is mostly because no descriptor set can capture all biologically important features. As a result, valuable chemical knowledge can thus stay hidden from hypothesis-based drug design. The simplest form of a structure-activity relationship (SAR) is a substructure that predisposes compounds towards reduce...
متن کاملSearch for the Pharmacophore of Histone Deacetylase Inhibitors Using Pharmacophore Query and Docking Study
Histone deacetylase inhibitors have gained a great deal of attention recently for the treatment of cancers and inflammatory diseases. So design of new inhibitors is of great importance in pharmaceutical industries and labs. Creating pharmacophor models in order to design new molecules or search a library for finding lead compounds is of great interest. This approach reduces the overall cost ass...
متن کامل